A neuro-fuzzy model for evaluating and predicting computational thinking skills of students
Modeste, S., Broley, L., Buteau, C., Rafalsaka, M. & Stephens, M. Computational thinking and mathematics. In Handbook of Digital (Curriculum) Resources in Mathematics Education (eds Pepin, B., Gueudet, G. & Choppin, J.) (Springer, in press).
Wing, J. M. Computational thinking. Commun. ACM. 49(3), 33–35 (2006).
Google Scholar
Dagienė, V., Jevsikova, T. & Stupurienė, G. Introducing informatics in primary education: Curriculum and teachers’ perspectives. In S. Pozdnyakov & V. Dagiene (Eds.), ISSEP 2019: Informatics in Schools. New Ideas in School Informatics. Lecture Notes in Computer Science(Vol. 11913, pp. 83–94). Springer. (2019). https://doi.org/10.1007/978-3-030-33759-9_7
OECD. PISA 2021 mathematics framework (draft). (2018). https://www.oecd.org/pisa/sitedocument/PISA-2021-mathematics-framework.pdf
United Nations Educational, Scientific and Cultural Organisation. Education for sustainable development for 2030 Toolbox. UNESCO. (2021). Retrieved from https://en.unesco.org/themes/education-sustainable-development/toolbox
Grover, S. & Pea, R. Computational thinking in K–12: A review of the state of the field. Educational Researcher. 42(1), 38–43 (2013).
Google Scholar
Labusch, A., Eickelmann, B. & Vennemann, M. Computational thinking processes and their congruence with problem-solving and information processing. Comput. Think. Educ. 65–78 (2019).
Suparta, W. & Alhasa, K. M. Modeling of Tropospheric Delays Using ANFIS (Springer Briefs in Meterology, Springer International Publishing AG Switzerland, 2016).
Jang, J. S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybernetics. 23(3), 665–685 (1993).
Google Scholar
Korkmaz, Ö., Çakır, R., Özden, M. Y., Oluk, A. & Sarıoğlu, S. Bireylerin Bilgisayarca Düşünme Becerilerinin Farklı değişkenler Açısından incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi. 34(2), 68–87 (2015).
Yıldız Durak, H. & Sarıtepeci, M. Analysis of the relation between computational thinking skills and various variables with the structural equation model. Comput. Educ. 116, 191–202 (2018).
Google Scholar
Taylan, O. & Karagözoğlu, B. An adaptive neuro-fuzzy model for prediction of student’s academic performance. Comput. Ind. Eng. 57, 732–741 (2009).
Google Scholar
Roman-Gonzalez, M., Perez-Gonzalez, J. C., Moreno-León, J. & Robles, G. Extending the Nomological network of computational thinking with non-cognitive factors. Comput. Hum. Behav. 80, 441459 (2018).
Google Scholar
Oluk, A. Öğrencilerin Bilgisayarca Düşünme Becerilerinin Mantıksal Matematiksel Zekâ Ve Matematik Akademik Başarıları Açısından Incelenmesi [Yüksek Lisans Tezi] (Amasya Üniversitesi, 2017).
Atmatzidou, S. & Demetriadis, S. Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robot. Auton. Syst. 75, 661–670 (2016).
Google Scholar
Liu, J. & Wang, L. Computational thinking in discrete mathematics. 2010 Second International Workshop on Education Technology and Computer Science 413–416 (2010).
Weintrop, D. et al. Defining computational thinking for mathmatics and science classrooms. J. Sci. Educ. Technol. 127–147. https://doi.org/10.1007/s10956-015-9581-5 (2016).
ISTE. CT leadership toolkit. (2015). https://www.iste.org/docs/ct-documents/ctleadershipt-toolkit.pdf?sfvrsn=4.
Yadav, A., Hong, H. & Stephenson, C. Computational thinking for all: pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends 60(6), 565–568. https://doi.org/10.1007/s11528-016-0087-7 (2016).
Google Scholar
Futschek, G. Algorithmic thinking: the key for Understanding computer science. Lecture Notes Comput. Sci. (including Subser. Lecture Notes Artif. Intell. Lecture Notes Bioinformatics). 4226 LNCS, 159–168. https://doi.org/10.1007/11915355_15 (2006).
Google Scholar
Ziatdinov, R. & Musa, S. Rapid mental computation system as a tool for algorithmic thinking of elementary school students development. Eur. Researcher. 25(7), 1105–1110 (2013).
Sternberg, R. J. & Lubart, T. I. The concept of creativity: prospects and paradigms. Handb. Creativity. 1, 3–15 (1999).
Grover, S. & Pea, R. Computational Thinking: A competency whose time has come. Computer science education: Perspectives on teaching and learning in school 19 (2018).
Bensley, D. A. Rules for reasoning revisited: toward a scientific conception of critical thinking. In (eds Horvath, C. P. & Forte, J. M.) Critical Thinking: Education in a Competitive and Globalizing World (1–45). New York, NY: Nova Science. (2011).
Kules, B. Computational thinking is critical thinking: connecting to university discourse, goals, and learning outcomes. Proc. Association Inform. Sci. Technol. 53(1), 1–6 (2016).
Google Scholar
Mayer, R. E. Thinking, Problem Solving (WH Freeman/Times Books/Henry Holt & Co, 1992).
Wing, J. M. Computational thinking and thinking about computing. Philosophical transactions of the Royal society A: mathematical. Phys. Eng. Sci. 366(1881), 3717–3725 (2008).
Google Scholar
Çimentepe, E. STEM Etkinliklerinin Akademik Başarı, Bilimsel Süreç Becerileri Ve Bilgisayarca Düşünme Becerilerine Etkisi [Yüksek Lisans Tezi] (Niğde Ömer Halisdemir Üniversitesi, 2019).
Slavin, R. E. Research on Cooperative Learning and Achievement: What We Know, What We Need To Know, Contemporary Educational Psychology 2143–69 (Allyn & Bacon, 1995).
Trilling, B. & Fadel, C. 21st Century Skills: Learning for Life in our Times (Wiley, 2009).
Czerkawski, B. & Lyman, E. Exploring issues about computational thinking in higher education. Tech. Trends. 59(2), 57–65 (2015).
Google Scholar
Levi Weese, J. The impact of STEM experiences on student Self-Efficacy in computational thinking. Am. Soc. Eng. Educ. 26–35 (2016).
Swaid, S. I. Bringing computational thinking to STEM education. Procedia Manuf. 3, 3657–3662. https://doi.org/10.1016/j.promfg.2015.07.761 (2015).
Google Scholar
Sarıtepeci, M. Ortaöğretim düzeyinde bilgi-işlemsel düşünme becerisinin çeşitli değişkenler açısından incelenmesi. 5. Uluslararası Öğretim Teknolojileri ve Öğretmen Eğitimi Sempozyumu Bildiri Kitabı (s. 218–226). Dokuz Eylül Üniversitesi, İzmir (2017).
Kalelioglu, F. & Gülbahar, Y. The effects of teaching programming via scratch on problem solving skills: A discussion from learners’ perspective. Inf. Educ. 13(1), 33–50 (2014).
Bers, M. U., Flannery, L., Kazakoff, E. R. & Sullivan, A. Computational thinking and tinkering: exploration of an early childhood robotics curriculum. Comput. Educ. 72, 145–157 (2014).
Google Scholar
Tran, Y. Computational thinking equity in elementary classrooms: what Third-Grade students know and can do. J. Educational Comput. Res. 57(1), 3–10 (2018).
Google Scholar
Angeli, C. & Giannakos, M. Computational thinking education: issues and challenges. Comput. Hum. Behav. 105, 106185 (2020).
Google Scholar
Fidelis Costa, E. J., Sampaio Campos, L. M. R. & Serey Guerrero, D. D. Computational thinking in mathematics education: A joint approach to encourage problem-solving ability. In Proceedings of 2017 IEEE Frontiers in Education Conference (FIE) (IEEE, 2017).
Bih, J. S., Weintrop, D., Walton, M., Elby, A. & Walkoe, J. Mutually supportive mathematics and computational thinking in a fourth-grade classroom. In The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) (eds Gresalfi, M. & Horn, I. S.) Vol. 3, 1389–1396 (International Society of the Learning Sciences, 2020).
Göktepe Körpeoğlu, S. & Göktepe Yıldız, S. Using artificial intelligence to predict students’ STEM attitudes: an adaptive neural-network-based fuzzy logic model. Int. J. Sci. Educ. 46(10), 1001–1026 (2023).
Google Scholar
Jyh-Shing, R. J. ANFIS: Adaptive-Network-Based fuzzy inference system. IEEE Trans. Syst. Man Cybernetics. 23(3), 665–685 (1993).
Google Scholar
Al-Hmouz, Shen, H. & Member, S. Modeling and simulation of an adaptive Neuro-Fuzzy inference system (ANFIS) for mobile learning. IEEE Trans. Learn. Technol. 5(3), 226–237 (2012).
Google Scholar
Morova, N., Terzi, S. & Saltan, M. Adaptif Sinirsel Bulanık Tahmin Yöntemi Ile Esnek Üstyapı Performans Tahmin Modeli Geliştirilmesi (Yenilikler, 2014). & Sempozyumu, U. Bildiriler Kitabı.
Zhang, R. & Lu, X. What can multi-factors contribute to Chinese EFL learners’ implicit L2 knowledge? Int. Rev. Appl. Linguist. Lang. Teach. 61(1), 25–47. https://doi.org/10.1515/iral-2024-0021 (2023).
Google Scholar
Stojanovic, J., Petkovic, D., Alarifi, I. M. & Milickovic, M. Application of distance learning in mathematics through adaptive neuro-fuzzy learning method. Computers Electr. Eng. 93 (2021).
Daneshvar, A., Homayounfar, M., Eshkiki, M. F. & Doshman-Ziari, E. Developing a model for performance Evaluaion of teachers in electronic education system using adaptive neuro fuzzy inference system (ANFIS). J. New. Approaches Educational Adminstration. 12(4), 176–190 (2021).
Mehdi, R. & Nachouki, M. A neuro-fuzzy model for predicting and analyzing student graduation performance in computing programs. Educ. Inform. Technol. 28, 2455–2484 (2022).
Google Scholar
Büyüköztürk, Ş. Sosyal Bilimler Için Veri Analizi El Kitabı (Pegem Akademi, 2012).
Cochran, W. G. Sampling Techniques 3rd edn (Wiley, 1977).
Korkmaz, Ö., Çakır, R. & Özden, M. Y. Bilgisayarca Düşünme beceri düzeyleri Ölçeğinin (BDBD) Ortaokul Düzeyine Uyarlanması. Gazi Eğitim Bilimleri Dergisi. 1(2), 143–162 (2015).
Kalaycı, D. PISA’da Başarılı Ülkelerin Ve Türkiye’nin Ana Dili Öğretim Programlarının Incelenmesi Ve Programların Anfıs Ile Analizi [Doktora Tezi] (Gazi Üniversitesi, Ankara, 2022).
Hossain, I., Choudhury, I. A., Mamat, A. B. & Hossain, A. Predicting the colour properties of viscose knitted fabrics using soft computing approaches. J. Text. Inst. 108(10), 1689–1699 (2017).
Google Scholar
Göktepe Körpeoğlu, S. & Göktepe Yıldız, S. Prediction of metacognition awareness of middle school students: comparison of ANN, ANFIS and statistical techniques. Avrupa Bilim Ve Teknoloji Dergisi. 38, 450–446 (2022).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
Çoban, E. Bilgisayarca Düşünme Becerilerinin Ölçülmesinde Alternatif Bir Yaklaşım: Performans Tabanlı Ölçüm [Yüksek Lisans Tezi] (Amasya Üniversitesi, 2021).
Gonzalez, M., Gonzalez, J. & Fernandez, C. Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Comput. Hum. Behav. 1–14 (2017).
Bilge Kunduz. Bilge Kunduz 2015 Raporları. (2015). http://www.bilgekunduz.org/wp-content/uploads/2016/01/bilgekunduz-rapor-2015.pdf
Barcelos, T. & Silveira, I. Teaching computational thinking in ınitial series an analysis of the confluence among mathematics and computer sciences in elementary education and its implications for higher education. 2012 XXXVIII Conferencia Latinoamericana En Infermatica (CLEI) içinde (s. 1–8). Medellin, Colombia. (2012). https://doi.org/10.1109/CLEI.2012.6427135
Çakır, E. Ters Yüz Sınıf Uygulamalarının Fen Bilimleri 7. Sınıf Öğrencilerinin Akademik Başarı, Zihinsel Risk Alma Ve Bilgisayarca Düşünme Becerileri Üzerine Etkisi [Yüksek Lisans Tezi] (Ondokuz Mayıs Üniversitesi, 2017).
Dede, C. Comparing frameworks for 21st century skills. 21st Century Skills: Rethinking How Students Learn. 20, 51–76 (2010).
Günüç, S., Odabaşı, H. F. & Kuzu, A. Yüzyıl öğrenci Özelliklerinin öğretmen Adayları Tarafından tanımlanması: Bir Twitter Uygulaması. Eğitimde Kuram Ve Uygulama. 9(4), 436–455 (2013).
Robinson, R., Palczewska, A., Palczewski, J. & Kidley, N. Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. J. Chem. Inf. Model. 57, 8, 1773–1792. https://doi.org/10.1021/acs.jcim.6b00753 (2017).
Google Scholar
Zhao, X., Wu, Y., Cui, W. & L., & iForest: interpreting random forests via visual analytics. IEEE Transactions Visualization Comput. Graphics. 25, 407–416. https://doi.org/10.1109/TVCG.2018.2864475 (2019).
Google Scholar
Aria, M., Cuccurullo, C. & Gnasso, A. A comparison among interpretative proposals for random forests. Mach. Learn. Appl. 6, 100094. https://doi.org/10.1016/J.MLWA.2021.100094 (2021).
Google Scholar
Haddouchi, M. & Berrado, A. Forest-ORE: mining an optimal rule ensemble to interpret random forest models. Eng. Appl. Artif. Intell. 143, 109997. https://doi.org/10.1016/j.engappai.2024.109997 (2025).
Google Scholar
Fernández-Delgado, M., Cernadas, E. & Barro, S. Do we need hundreds of classifiers to solve real world classification problems?? J. Mach. Learn. Res. 15, 3133–3181 (2014).
Google Scholar
Wei, L. A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Appl. Soft Comput. 42, 368–376. https://doi.org/10.1016/j.asoc.2016.01.027 (2016).
Google Scholar
Bui, D. et al. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water https://doi.org/10.3390/W10091210 (2018).
Google Scholar
Kanwal, S. & Jiriwibhakorn, S. Advanced fault detection, classification, and localization in transmission lines: A comparative study of ANFIS, neural networks, and hybrid methods. IEEE Access. 12, 49017–49033. https://doi.org/10.1109/ACCESS.2024.3384761 (2024).
Google Scholar
Bocconi, S. et al. Reviewing computational thinking in compulsory education: state of play and practices from computing education. EU https://doi.org/10.2760/126955 (2022).
Google Scholar
Heintz, F., Mannila, L. & Farnqvist, T. A review of models for introducing computational thinking, computer science and computing in K-12 Education. Proceedings of the 2016 IEEE Frontiers in Education Conference 1–9 (2016).
Tang, X., Yin, Y., Lin, Q., Hadad, R. & Zhai, X. Assessing computational thinking: A systematic review of empirical studies. Comput. Educ. 148, 103798 (2020).
Google Scholar
Pedrycz, W. & Gomide, F. Fuzzy Systems Engineering: Toward human-centric Computing (Wiley, 2007).
Román-González, M., Pérez-González, J. C. & Jiménez-Fernández, C. Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Comput. Hum. Behav. 72, 678–691 (2018).
Google Scholar
Zadeh, L. A. Fuzzy sets. Inf. Control. 8(3), 338–353 (1965).
Google Scholar
Huang, C. Q. et al. XKT: toward explainable knowledge tracing model with cognitive learning theories for questions of multiple knowledge concepts. IEEE Trans. Knowl. Data Eng. 36(11), 7308–7325 (2024).
Google Scholar