• Stein, H. S. & Gregoire, J. M. Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10, 9640–9649 (2019).

    Article 

    Google Scholar 

  • Tom, G. et al. Self-driving laboratories for chemistry and materials science. Chem. Rev. 124, 9633–9732 (2024).

    Article 

    Google Scholar 

  • Shiri, P. et al. Automated solubility screening platform using computer vision. iScience 24, 102176 (2021).

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article 

    Google Scholar 

  • Darvish, K. et al. Organa: a robotic assistant for automated chemistry experimentation and characterization. Matter 8, 101897 (2025).

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article 

    Google Scholar 

  • Lunt, A. M. et al. Modular, multi-robot integration of laboratories: an autonomous workflow for solid-state chemistry. Chem. Sci. 15, 2456–2463 (2024).

    Article 

    Google Scholar 

  • Li, J. et al. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 11, 2046 (2020).

    Article 

    Google Scholar 

  • Vriza, A., Chan, H. & Xu, J. Self-driving laboratory for polymer electronics. Chem. Mater. 35, 3046–3056 (2023).

    Article 

    Google Scholar 

  • Pelkie, B. et al. Democratizing self-driving labs through user-developed automation infrastructure. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2025-zhkrf (2025).

  • Mehr, S. H. M., Craven, M., Leonov, A. I., Keenan, G. & Cronin, L. A universal system for digitization and automatic execution of the chemical synthesis literature. Science 370, 101–108 (2020).

    Article 

    Google Scholar 

  • Tao, F., Zhang, H. & Zhang, C. Advancements and challenges of digital twins in industry. Nat. Comput. Sci. 4, 169–177 (2024).

    Article 

    Google Scholar 

  • Lu, Y. et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61, 101837 (2020).

    Article 

    Google Scholar 

  • Almeaibed, S., Al-Rubaye, S., Tsourdos, A. & Avdelidis, N. P. Digital twin analysis to promote safety and security in autonomous vehicles. IEEE Commun. Stand. Mag. 5, 40–46 (2021).

    Article 

    Google Scholar 

  • Li, Y. et al. Choose your simulator wisely: a review on open-source simulators for autonomous driving. IEEE Trans. Intell. Veh. 9, 4861–4876 (2024).

    Article 

    Google Scholar 

  • Laubenbacher, R., Mehrad, B., Shmulevich, I. & Trayanova, N. Digital twins in medicine. Nat. Comput. Sci. 4, 184–191 (2024).

    Article 

    Google Scholar 

  • Isaac Sim—robotics simulation and synthetic data generation. https://developer.nvidia.com/isaac/sim (NVIDIA Developer, 2025).

  • Mittal, M. et al. Orbit: a unified simulation framework for interactive robot learning environments. IEEE Robot. Autom. Lett. 8, 3740–3747 (2023).

    Article 

    Google Scholar 

  • Narang, Y. et al. Factory: fast contact for robotic assembly. In Proc. Robotics: Science and Systems Vol. 6 (2022).

  • Mamou, K. in Game Engine Gems 3 (ed. Lengyel, E.) 141–158 (AK Peters, 2016).

  • Raffin, A. et al. Stable-baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22, 1–8 (2021).

    Google Scholar 

  • Mandlekar, A. et al. What matters in learning from offline human demonstrations for robot manipulation. In Proc. 5th Conference on Robot Learning 1678–1690 (2022).

  • Makoviichuk, D. & Makoviychuk, V. rl-games: a high-performance framework for reinforcement learning. GitHub https://github.com/Denys88/rl_games (2021).

  • Rudin, N., Hoeller, D., Reist, P. & Hutter, M. Learning to walk in minutes using massively parallel deep reinforcement learning. In Proc. 5th Conference on Robot Learning Vol. 164, 91–100 (Proceedings of Machine Learning Research, 2022).

  • Serrano-Muñoz, A., Chrysostomou, D., Bøgh, S. & Arana-Arexolaleiba, N. skrl: modular and flexible library for reinforcement learning. J. Mach. Learn. Res. 24, 1–9 (2023).

    Google Scholar 

  • Li, S. et al. Chemistry3d: robotic interaction benchmark for chemistry experiments. Preprint at https://arxiv.org/abs/2406.08160 (2024).

  • Kadokawa, Y., Hamaya, M. & Tanaka, K. Learning robotic powder weighing from simulation for laboratory automation. In Proc. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems 2932–2939 (2023).

  • Pizzuto, G. et al. Accelerating laboratory automation through robot skill learning for sample scraping. In Proc. 2024 IEEE 20th International Conference on Automation Science and Engineering 2103–2110 (2024).

  • Lopez-Guevara, T. et al. Stir to pour: efficient calibration of liquid properties for pouring actions. In Proc. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems 5351–5357 (2020).

  • Vescovi, R. et al. Towards a modular architecture for science factories. Digit. Discov. 2, 1980–1998 (2023).

    Article 

    Google Scholar 

  • Beeler, C. et al. Chemgymrl: a customizable interactive framework for reinforcement learning for digital chemistry. Digit. Discov. 3, 742–758 (2024).

    Article 

    Google Scholar 

  • Rihm, S. D. et al. The digital lab facility manager: automating operations of research laboratories through ‘the world avatar’. Nexus 1, 100031 (2024).

    Article 

    Google Scholar 

  • Mildenhall, B. et al. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99–106 (2021).

    Article 

    Google Scholar 

  • Zeng, A., Song, S., Lee, J., Rodriguez, A. & Funkhouser, T. Tossingbot: learning to throw arbitrary objects with residual physics. IEEE Transact. Robot. 36, 1307–1319 (2020).

    Article 

    Google Scholar 

  • Xu, Z., Wu, J., Zeng, A., Tenenbaum, J. B. & Song, S. DensePhysNet: learning dense physical object representations via multi-step dynamic interactions. In Proc. Robotics: Science and Systems (2019).

  • Openusd: Universal scene description v25.08 (Pixar Animation Studios and the OpenUSD community, 2025); https://openusd.org

  • Macklin, M. & Müller, M. Position based fluids. ACM Transact. Graph. 32, 1–12 (2013).

    Article 

    Google Scholar 

  • Sundaralingam, B. et al. Curobo: Parallelized collision-free robot motion generation. In 2023 IEEE International Conference on Robotics and Automation 8112–8119 (IEEE, 2023).

  • Wen, B., Yang, W., Kautz, J. & Birchfield, S. FoundationPose: unified 6D pose estimation and tracking of novel objects. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 17868–17879 (2024).

  • Arrhenius, S. Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte. Z. Phys. Chem. 4U, 96–116 (1889).

    Article 

    Google Scholar 

  • Elsner, J. Taming the panda with python: a powerful duo for seamless robotics programming and integration. SoftwareX 24, 101532 (2023).

    Article 

    Google Scholar 

  • Johnson, M. S. & Green, W. H. A machine learning based approach to reaction rate estimation. React. Chem. Eng. 9, 1364–1380 (2024).

    Article 

    Google Scholar 

  • Black, K. et al. π0: a vision–language–action flow model for general robot control. In Proc. Robotics: Science and Systems (RSS) https://doi.org/10.15607/RSS.2025.XXI.010 (2024).

  • Colledanchise, M. & Ögren, P. Behavior Trees in Robotics and AI: an Introduction (CRC, 2018).

  • Darvish, K., Simetti, E., Mastrogiovanni, F. & Casalino, G. A hierarchical architecture for human–robot cooperation processes. IEEE Transact. Robot. 37, 567–586 (2020).

    Article 

    Google Scholar 

  • Leong, S. X. et al. Steering towards safe self-driving laboratories. Nat. Rev. Chem. 9, 707–722 (2025).

  • Liu, Z., Bahety, A. & Song, S. REFLECT: summarizing robot experiences for failure explanation and correction. In Proc. 7th Conference on Robot Learning 3468–3484 (2023).

  • Yu, W. et al. Language to rewards for robotic skill synthesis. In Proc. 7th Conference on Robot Learning 374–404 (2023).

  • Skreta, M. et al. Replan: robotic replanning with perception and language models. Preprint at https://arxiv.org/abs/2401.04157 (2024).

  • Wang, Y. et al. RoboGen: towards unleashing infinite data for automated robot learning via generative simulation. In Proc. 41st International Conference on Machine Learning 51936–51983 (2024).

  • Tancik, M. et al. Nerfstudio: a modular framework for neural radiance field development. In Proc. ACM SIGGRAPH 2023 Conference article 72 (2023).

  • Luma ai, Online platform for 3D asset creation. Luma Labs, Inc. https://lumalabs.ai/ (2025).

  • Buss, S. R. Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods. Technical report (Univ. California, San Diego, 2009).

  • Robot dynamics lecture notes, Lecture notes (Robotic Systems Lab, ETH Zurich, 2017).

  • Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

  • Wang, X., Chen, Y. & Zhu, W. A survey on curriculum learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4555–4576 (2021).

    Google Scholar 

  • Matterix Developers. ac-rad/matterix: v0.1.0. Zenodo https://doi.org/10.5281/zenodo.17095671 (2025).

  • Jiang, Y. et al. Autonomous biomimetic solid dispensing using a dual-arm robotic manipulator. Digit. Discov. 2, 1733–1744 (2023).

    Article 

    Google Scholar 

  • Fakhruldeen, H., Pizzuto, G., Glowacki, J. & Cooper, A. I. Archemist: autonomous robotic chemistry system architecture. In 2022 International Conference on Robotics and Automation 6013–6019 (IEEE, 2022).

  • Yoshikawa, N. et al. Large language models for chemistry robotics. Auton. Robots 47, 1057–1086 (2023).

    Article 

    Google Scholar 

  • Pizzuto, G., De Berardinis, J., Longley, L., Fakhruldeen, H. & Cooper, A. I. SOLIS: autonomous solubility screening using deep neural networks. In IEEE International Joint Conference on Neural Networks (2022).

  • Lienhard V, J. H. & Lienhard IV, J. H. A Heat Transfer Textbook 6th edn (Phlogiston, 2024).

  • Kerr, R. M. Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139–179 (1996).

    Article 

    Google Scholar 

  • Source link